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In this study, we propose a mixed-integer linear programming model for a Heterogeneous 

Fixed Fleet Drone Routing problem (HFFDRP) that minimizes the post-disaster 

inspection cost of a disaster-affected area by accounting a number of drone trajectory-

specific factors into consideration such as battery recharging costs, servicing costs, drone 

hovering, turning, acceleration, constant, and deceleration costs, and many others. The 

trajectories between each pair of nodes are constructed using a path construction model. 

Two heuristic algorithms are proposed, namely, Adaptive Large Neighborhood Search 

(ALNS) algorithm and Modified Backtracking Adaptive Threshold Accepting (MBATA) 

algorithm, to solve the largest instances of our proposed optimization model. 

Computational results indicate that the proposed MBATA algorithm is capable of 

producing high-quality solutions consistently within a reasonable amount of time. 

Finally, a real-life case study is used to visualize and validate the modeling. 
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CHAPTER I  

INTRODUCTION 

Unmanned aerial vehicles (UAVs), commonly known as drones, are receiving 

tremendous attention from the humanitarian organizations due to their ability to 

monitor/access cutoff regions following a natural/man-made catastrophe. There are a 

number of disasters where drones have already been utilized such as damage monitoring 

in Nepal earthquake [1] and Fukushima nuclear power plant [2], humanitarian aid 

distribution in Haiti and the Dominican Republic [3], and many others. Despite of drones 

high potential to serve in harsh environments, they are surprisingly still under-utilized in 

disaster response applications primarily due to their technological limitations, set 

legislation, and many more [4]. 

 A large technological explosion in the development of drones has been realized 

in recent years [5]. Military sector is primarily responsible for such advancements [6]. 

While these advanced drones are not typically being implemented for civilian purposes, 

nevertheless, miniaturization of electronic control systems and the availability of low-

cost sensors in the marketplace have led to the development of more sophisticated 

civilian drones. These drones are equipped with various features, including but not 

limited to global positioning system (GPS), wireless communication sensors, high 

resolution cameras, and many other features which enable drones to perform special 

functions such as automated flight control, capturing high quality images, object tracking, 
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and collision avoidance. Leveraging these functions, drones posses high potential to 

apply them in disaster management applications. Drones can support real-time 

monitoring of a disaster-affected area which enables an administrator to quickly gather 

relevant information that can be analyzed to plan and efficiently deploy humanitarian 

relief operations.  

When a disaster strikes, critical infrastructures such as transportation network and 

sensitive facilities (e.g., power plants, nuclear plants) might be heavily impacted. Critical 

infrastructures’ assets, systems, and networks, whether physical or virtual, are considered 

extremely important since their incapacitation or destruction might have a debilitating 

effect on nations economy, health, security, safety, or any combination thereof. Due to 

the potential damage of the traditional transportation network, ensuring logistic support 

and proper assessment of disaster-affected areas are often challenging. Even if the 

transportation network is functioning properly, it is preferred very seldom to have direct 

human involvement in disaster-affected areas due to the exposure of potential hazardous 

situations. This being the case, drones are considered as one of the ideal substitutes since 

they are capable of providing information for risk assessment along with mapping and 

planning disaster-affected areas with minimal human intervention.  

Although drone routing has been a research area of interest in recent years, the 

majority of the existing studies primarily focus on the concept of last-mile delivery of 

parcels to the customers, where drones can be used either as a standalone mode of 

transportation or in conjunction with other modes of transportation such as trucks. 

Murray and Chu [7] introduce a new variant of the traditional Traveling Salesman 

Problem (TSP), referred to as Flying Sidekick Traveling Salesman Problem (FSTSP), to 
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investigate the challenges of determining optimal customer assignments to a drone 

working jointly with a delivery truck. Likewise, a mathematical formulation, referred to 

as TSP with Drone (TSP-D), has been proposed by Agatz et al. [8] for the same problem 

that optimizes the simultaneous movement of a truck and drone on a road network. 

Coelho et al. [9] propose a real-time routing problem where different types of drones are 

allowed to collect and deliver packages simultaneously. Ulmer and Thomas [10] survey 

how the possibility of combining delivery trucks with drones might reduce the required 

delivery costs and increase the number of customers served in the same day. The authors 

label this resultant problem as Same-Day Delivery Routing Problem with Heterogeneous 

Fleets (SDDPHF). In addition to these studies, numerous large companies, such as 

Amazon, DHL, and Google already shown their interests in applying drones to deliver 

parcels in urban areas [11, 7]. Drone applications can also be found in border line 

surveillance [12], power line inspection [13, 14], soil erosion monitoring [15], security 

operations in the oil and gas industry [16], and many others. Additionally, Kim et al. [17] 

study how the stochasticity associated with battery duration, caused by the air 

temperature, impact the drones flight schedule. 

 Although it is universally accepted that it is barely possible to neutralize all the 

negative impacts of disasters, their impacts, however, can be mitigated by adopting 

appropriate and timely disaster preparedness and management actions. Drones can 

signifi- cantly benefit in this regard as well as during the entire disaster management 

cycle, i.e., mitigation, preparedness, response, and recovery stages [18]. Till now few 

studies focus on drone delivery in emergency situations, mainly concentrating on the 

combination of drones with alternative means of transport (e.g., trucks), if available. 
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Chowdhury et al. [4] propose a Continuous Approximation (CA) model that designs the 

potentiality of using drones as a mode of transportation to supply emergency 

commodities in a disaster-affected region.  

Table 1.1 Distinguishing our study with related vehicle routing and drone routing 

literature 

References Heterogeneous 

vehicles/ 

drones 

Fuel/battery 

level 

Service 

time 

Recharging 

stations 

Speed 

optimization 

Energy 

consumption 

Vehicle 

routing 

literature 

 

Erdogan & 

Miller-Hooks 

[22] 

         

Demir et al. 

[23] 

          

Koc et al. [24]            

Markov et al. 

[25] 

          

Moshref-

Javadi and Lee 

[26] 

        

Kwon et al. 

[27] 

       

Drone 

routing 

literature 

 

Rabta et al. 

[21] 

        

Kim et al. [17]        

Lim et al. [13]          

Murray and 

Chu [7] 

        

Coelho et al. 

[9] 

            

Cho et al. [16]          

Our study             

 

Shang et al. [19] and Quaritsch et al. [20] formulate a TSP to get the shortest civil drone 

flight path in surveying and taking images of a disaster-affected region. Rabta et al. [21] 

propose a mixed-integer linear programming model that minimizes the total traveling 



www.manaraa.com

 

5 

distance of a drone in a disaster-affected region by taking into account payload and 

energy constraints while recharging stations are installed to allow the extension of the 

operating distance of the drone. The authors also discussed different priority policies 

(e.g., relative priority, absolute priority) to serve a disaster-affected region. Different 

from this study, our study additionally considers heterogeneous drone types, speed 

optimization, battery capacity, and accurate representation of the energy cost. 

In this paper, we propose an optimization modeling framework to solve a new 

variant of the Heterogeneous Fixed Fleet Vehicle Routing Problem (HFFVRP), referred 

to as Heterogeneous Fixed Fleet Drone Routing Problem (HFFDRP), to design a safe, 

reliable, and cost-efficient disaster-affected region inspection plan using battery-driven 

drones. A mixed-integer linear programming model (MILP) is proposed to minimize the 

post-disaster inspection cost by considering a number of drone trajectory-specific factors 

into consideration such as ascending and descending costs, battery recharging costs, 

servicing costs (i.e., costs associated with taking images at disaster-affected nodes), drone 

hovering, turning, acceleration, constant, and deceleration costs. We consider six key 

features of a HFFDRP in addition to the basic features available in a Vehicle Routing 

Problem (VRP) framework (e.g., visiting each node exactly once, sub-tour elimination 

constraints), namely, the consideration of heterogeneous drones, energy consumption, 

recharging stations along with battery level tracking, service time, and drone velocity 

(speed) optimization. These features are critical to realistically model a drone routing 

problem in serving a disaster-affected region. Table 1 summarizes the key differences 

between our study with related vehicle routing and drone routing literature. We note that 

our model is very similar to the model proposed by Coelho et al. [9] except the case that 
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we more realistically capture the energy cost, develop a path construction model, and 

apply the model to a disaster-management problem. We further note to the readers that 

the energy consumption cost components, referred in Table 1, are significantly different 

in drone transportation compared to regular vehicular transportation (e.g., trucks). In 

addition to proposing the modeling framework, another important contribution of this 

paper is to propose a path construction model by obeying the restrictions set forward by 

the Federal Aviation Agency (FAA), technological, geographical, and environment 

restrictions of drone transportation. Furthermore, we realize that there is an urgency to 

quickly inspect a large number of disaster-affected nodes. To alleviate this problem, we 

propose two heuristic algorithms, namely, Adaptive Large Neighborhood Search (ALNS) 

algorithm and a Modified Backtracking Adaptive Threshold Accepting (MBATA) 

algorithm, to efficiently solve our proposed optimization model in a reasonable amount 

of time. Finally, we use Hancock county from Mississippi State as a test bed to visualize 

and validate the modeling results. The outcome of this study provides a number of 

managerial insights such as how the drone depot location, number of disaster affected 

nodes and battery recharging stations, maximum allowable travel time, and battery 

recharging time impact the design and management of a drone routing operation.  

The exposition of this paper is as follows. Section 2 introduces the problem and 

the routing and path-construction model formulations. The proposed solution algorithms 

to solve the optimization problem are then discussed in Section 3. The first part of 

Section 4 describes the data used to generate instances of the research problem. The 

second part determines the efficiency and effectiveness of the proposed solution 

algorithms, while the third part of this section performs sensitivity analysis by varying a 
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number of key parameters from a real-life case example. Finally, Section 5 summarizes 

the paper and discusses future research directions.
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CHAPTER II 

PROBLEM DESCRIPTION AND MODEL FORMULATION 

This section first introduces a mathematical formulation for a Heterogeneous 

Fixed Fleet Drone Routing Problem (HFFDRP). The goal is to minimize the overall 

routing cost of drones to monitor/mapping a disaster-affected region. Next, we present a 

path construction model to obtain optimal/feasible routes between two disaster-affected 

nodes by obeying the restrictions set forward by the Federal Aviation Agency (FAA) 

(i.e., should operate under a ceiling of 400 feet), technological (e.g., limited battery and 

weight carrying capacities), geographical (i.e., cannot fly over a densely populated area), 

and environmental (e.g., wind speed and direction) considerations. Finally, variable 

fixing and valid inequalities are proposed to accelerate the computational performance of 

the proposed mathematical model formulation. 

 Mathematical Model Formulation for HFFDRP 

In the following, the sets and indices, parameters, and decision variables are 

briefly explained and followed by the mathematical formulation. 

Sets and Indices 

 𝚰: set of disaster-affected regions, indexed by i and j 

 𝓕: set of battery recharging stations, indexed by i and j 

 𝚽: set of dummy recharging nodes for battery recharging stations, indexed by i 

and j 

 𝜥: set of drones, indexed by k 

 𝑺: set of drone speed levels, indexed by s 
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 𝓕𝚽: set of battery recharging stations including dummy recharging nodes, 

indexed by i and j 

 V: set of nodes including depot (𝑣0), disaster-affected regions, battery recharging 

stations, and dummy recharging nodes, i.e., V = 𝑣0 ∪ 𝛪 ∪ ℱ ∪ 𝛷 

 

 

Figure 2.1 Illustration for different stages of a drone flight and its respective cost 

components 

Parameters 

 𝒅𝒊𝒋: trajectory distance1 between source node i ∈ V to destination node j ∈ V|i ≠j 

 𝒎: number of available drones 

 𝒒𝒌: battery capacity of drone k ∈ 𝛫 

 𝝍𝒋𝒌: service/recharging time required by drone k ∈ 𝛫 at node j ∈ V \{𝑣0} 

 𝒆𝒋𝒌: unit battery recharging cost by drone k ∈ 𝛫 at battery recharging station j 

∈ℱΦ 

 𝒇𝒋𝒌: unit service cost by drone k ∈ 𝛫 at disaster-affected region j ∈ 𝛪 

 𝒄𝒊𝒋𝒌: unit battery consumption cost by drone k ∈ 𝛫 through arc (i,j) ∈ V|i ≠j 

 𝒄𝒊𝒋𝒌𝒔: unit battery consumption cost by drone k ∈ 𝛫 through arc (i,j) ∈ V|i ≠j 

under speed level s ∈ S 

 𝒕𝒌
𝒎𝒂𝒙: maximum allowable travel time of drone k ∈ 𝛫 

 �̅�𝒌𝒔: average velocity of drone k ∈ 𝛫 under speed level s ∈ S 

 𝒓𝒌𝒔: battery consumption rate by drone k ∈ 𝛫 under speed level s ∈ S 

 𝒑𝒌
𝒂/ 𝒑𝒌

𝒅: ascending/descending motor power required by drone k ∈ 𝛫 

 𝒉𝒌: flying altitude of drone k ∈ 𝛫 

                                                 
1 Trajectories are determined based upon the path construction model. 
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 𝒗𝒌
𝒂/ 𝒗𝒌

𝒅: ascending/descending velocity of drone k ∈ 𝛫 

 𝜷𝒌: minimum power required to hover over a disaster-affected region by drone k 

∈ 𝛫 

 𝝀𝒌: motor speed multiplier of drone k ∈ 𝛫 

 𝒘𝒌𝒔
𝒕𝒖𝒓𝒏: angular velocity required by drone k ∈ 𝛫 under speed level s ∈ S 

 �̅�𝒊𝒋: average rotational angle between source node i ∈ V to destination node j ∈ V|i 

≠j 

 𝒏𝒊𝒋: number of turns between source node i ∈ V to destination node j ∈ V|i ≠j 

 𝒑𝒌𝒔
𝒕𝒖𝒓𝒏: motor power required by each turn of drone k ∈ 𝛫 under speed level s ∈ S 

 𝚪𝒌: maximum payload of drone k ∈ 𝛫 including drone’s weight 

 𝒈𝟏/𝒈𝟐/𝒈𝟑:  percentage of the drone’s trajectory during acceleration/intermediate/ 

deceleration phase associated to arc (i,j) ∈ V|i ≠j 

 𝒑𝒌
𝒂𝒄𝒄/𝒑𝒌

𝒊𝒏𝒕/ 𝒑𝒌
𝒅𝒆𝒄: power consumption rate by drone k∈ 𝛫 during 

acceleration/intermediate/ deceleration phase 

Decision Variables 

 𝑿𝒊𝒋𝒌: 1 if arc (i,j) ∈ V|i ≠j is traversed by drone k∈ 𝛫; 0 otherwise 

 𝒁𝒊𝒋𝒌𝑺: 1 if drone k∈ 𝛫 travels through arc (i,j) ∈ V|i ≠j under speed level s ∈ S, 0 

otherwise 

 𝒀𝒊𝒌: battery recharging level of drone k∈ 𝛫 at arrival time on node i ∈ V 

 𝝉𝒊𝒌: arrival time of drone k∈ 𝛫 at node i ∈ V 

We now introduce the decision variables of our proposed mathematical model 

formulation. The first and second sets of binary decision variables, i.e., 𝚾 ≔

{𝑋𝑖𝑗𝑘}(𝑖,𝑗)∈𝑉|𝑖 ≠𝑗,𝑘 ∈ 𝛫 and 𝚭 ≔ {𝑍𝑖𝑗𝑘𝑆}
(𝑖,𝑗)∈𝑉|𝑖 ≠𝑗,𝑘 ∈ 𝛫,s ∈ S

 are defined to determine optimal 

drone routes with respect to different speed levels. The third set of decision variables, i.e., 

𝚼 ≔ {𝑌𝑖𝑘}𝑖∈𝑉,𝑘 ∈ 𝛫 defines the remaining battery based upon arrival time of a drone on 

each node, while the last set of decision variables, i.e., 𝛕 ≔ {τ𝑖𝑘}𝑖∈𝑉,𝑘 ∈ 𝛫 defines the 

arrival time of a drone on each node. 

The objective of model [DR] is to minimize the post-disaster inspection cost by 

considering a number of drone trajectory-specific factors into consideration such as 

ascending and descending costs, battery recharging costs, servicing costs (i.e., costs 
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associated with taking images at disaster-affected nodes), drone hovering, turning, 

acceleration, constant, and deceleration costs. The goal is to design a safe, reliable, and 

cost-efficient disaster-affected region inspection plan using battery-driven drones. 

[DR]  Χ,Ζ,Υ,τ
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ ∑ c0jk(

hk

vk
a)pk

aX0jkJ∈V\{v0}k∈K + ∑ ∑ ∑ cjik(
hk

vk
a)pk

aXjiki∈Vj∈FΦk∈K + 

 

 

                      ∑ ∑ cj0k (
hk

vk
d) pk

dXjokj∈V\{v0} + ∑ ∑ ∑ cijk(
hk

vk
d)pk

dXijki∈Vj∈FΦk∈Kk∈K     + 

 

 

                          ∑ ∑ ∑ (𝑒𝑗𝑘𝛹𝑗𝑘)𝑋𝑗𝑖𝑘𝑖∈𝑉𝑗∈𝐹𝛷𝑘∈𝐾 +      ∑ ∑ ∑ (𝑓𝑗𝑘𝛹𝑗𝑘)𝑋𝑖𝑗𝑘𝑖∈𝑉𝑗∈𝐼𝑘∈𝐾 + 

 

 

                                 ∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑠((𝛽𝑘 + 𝜆𝑘) (
𝑑𝑖𝑗

�̅�𝑘𝑠
) + 𝑝𝑘𝑠

𝑡𝑢𝑟𝑛(
𝑛𝑖𝑗�̅�𝑖𝑗

𝑤𝑘𝑠
𝑡𝑢𝑟𝑛))𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾𝑠∈𝑆 + 

 

 

                          (√(𝛤𝑘�̅�𝑘𝑠𝑝𝑘
𝑎𝑐𝑐))𝑔1 + (

2𝑝𝑘
𝑖𝑛𝑡

�̅�𝑘𝑠
) 𝑔2 + √(𝛤𝑘�̅�𝑘𝑠𝑝𝑘

𝑑𝑒𝑐)𝑔3)𝑑𝑖𝑗)𝑍𝑖𝑗𝑘𝑠          (1) 

 

 

subject to: 

∑ ∑ 𝑋𝑖𝑗𝑘 = 1                     ∀𝑖 ∈ 𝐼𝑗∈𝑉𝑘∈𝐾                                                                           (2) 

∑ 𝑋𝑖𝑗𝑘 =𝑖∈𝑉 ∑ 𝑋𝑗𝑖𝑘                  ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖∈𝑉                                                               (3) 

Ascending cost 

Descending cost 

Battery Recharging 

Cost 

Disaster-affected Service 

Cost 

Hovering 

Cost 

Turning 

Cost 

Acceleration 

 Cost 

Constant 

Speed Cost 

Deceleration 

Cost 
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∑ ∑ 𝑋𝑖𝑗𝑘 ≤ 1                      ∀𝑖 ∈ 𝐹𝛷𝑗∈𝑉𝑘∈𝐾                                                                        (4)                                 

∑ ∑ 𝑋𝑜𝑗𝑘 ≤ 𝑚𝑗∈𝑉{𝑣0}𝑘∈𝐾                                                                                                  (5) 

∑ 𝑍𝑖𝑗𝑘𝑠 = 𝑋𝑖𝑗𝑘                        ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝑉             𝑠∈𝑆                                                (6) 

𝜏𝑗𝑘 + 𝑡𝑘
𝑚𝑎𝑥(1 − 𝑋𝑖𝑗𝑘) ≥ 𝜏𝑖𝑘 + 𝛹𝑖𝑘𝑋𝑖𝑗𝑘 +

(∑ 𝑑𝑖𝑗𝑍𝑖𝑗𝑘𝑠𝑠∈𝑆 ) 

∑ �̅�𝑘𝑠𝑠∈𝑆
  ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉\{𝑣0}     (7) 

∑ 𝑑0𝑖𝑍0𝑖𝑘𝑠𝑠∈𝑆

�̅�𝑘𝑠
≤ 𝜏𝑖𝑘 ≤ 𝑡𝑘

𝑚𝑎𝑥 −
∑ 𝑑𝑖0𝑍𝑖0𝑘𝑠𝑠∈𝑆

∑ �̅�𝑘𝑠𝑠∈𝑆
− 𝜓𝑖𝑘                   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉\{𝑣0}               (8) 

𝜏0𝑘 ≤ 𝑡𝑘
𝑚𝑎𝑥                                                                                  ∀𝑘 ∈ 𝐾                                  (9) 

𝑌𝑖𝑘 = 𝑞𝑘                                                                                      ∀𝑘 ∈ 𝐾,  𝑖 ∈ 𝐹𝛷 ∪ {0}           (10)                                                       

𝑌𝑗𝑘 ≤ 𝑌𝑖𝑘 − ∑ 𝑟𝑘𝑠𝑑𝑖𝑗𝑍𝑖𝑗𝑘𝑠 + 𝑞𝑘(1 − 𝑋𝑖𝑗𝑘)                    𝑠∈𝑆 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉, 𝑗 ∈ 𝐼              (11) 

𝑌𝑖𝑘 ≥ ∑ 𝑟𝑘𝑠𝑑𝑖0𝑍𝑖0𝑘𝑠𝑠∈𝑆                                                             ∀𝑘 ∈ 𝐾,  𝑖 ∈ 𝑉\{𝑣0}             (12)                                 

𝑌𝑖𝑘 ≥ ∑ 𝑟𝑘𝑠𝑑𝑖𝑗𝑍𝑖𝑗𝑘𝑠                                                            𝑠∈𝑆 ∀𝑘 ∈ 𝐾,  𝑖 ∈ 𝐼,  𝑗 ∈ 𝐹𝛷          (13)                                         

 𝑋𝑖𝑗𝑘 ∈ {0,1}                                                                             ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝑉                  (14) 

  𝑍𝑖𝑗𝑘𝑠 ∈ {0,1}                                                                          ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝑉, 𝑠 ∈ 𝑆        (15) 

Yjk,τik ≥ 0                                                                      ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝑉                         (16)                           

The first and second terms of the objective function in [DR] represent, respectively, the 

energy consumption costs associated with ascending drones from depot and battery 

recharging stations. The third and fourth terms provide similar costs (i.e., energy 

consumption costs) which are incurred due to descending drones at depot and battery 

recharging stations. Note that the velocity (𝑣𝑘
𝑎/ 𝑣𝑘

𝑑:), required motor power (𝑝𝑘
𝑎/ 𝑝𝑘

𝑑) and 

flying altitude (ℎ𝑘) contribute in the ascending and descending cost components of the 

drone transportation. The fifth and sixth terms represent, respectively, the costs 

associated with battery recharging and disaster-affected region servicing costs by drones. 
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Finally, the last five terms in the objective function represent, respectively, the costs 

associated with hovering, turning, accelerating, maintaining constant speed, and 

decelerating drones at a particular speed. These cost components are crucial since they 

severely impact the serviceability of drones in a disaster-affected region. 

Constraint (2) guarantee that each disaster-affected node is visited by only one 

drone. Constraints (3) are known as the flow conservation constraints which ensure that 

at each node of a complete directed graph, i.e., 𝑗 ∈ 𝑉\{𝑣0}, an incoming arc of a drone 

must be followed by an outgoing arc of that drone. Constraints (4), implemented for 

connectivity to battery recharging stations, indicate that a battery recharging station might 

not be visited by drones. Constraints (5) limit the availability of drones at the depot. 

Constraints (6) ensure that only one speed level is chosen for drone 𝑘 ∈ 𝐾 to traverse an 

arc (𝑖, 𝑗) ∈ 𝑉. Constraints (7) determine the arrival time of a drone at each node of its 

route. 

The difference between arrival times of two consecutive nodes of a drone 

trajectory if determined by the servicing/battery recharging time along with the travel 

time between the nodes. Constraints (8) restrict the maximum time availability of a drone 

to serve a disaster-affected region. Constraints (9) indicate that drone 𝑘 ∈ 𝐾 will have 

maximum 𝑡𝑘
𝑚𝑎𝑥  time availability at the depot. Constraints (10) ensure that the drone 

batteries reach to full charging at depot and battery recharging stations. Constraints (11) 

guarantee minimum required battery to travel through a trajectory in a disaster-affected 

region. Constraints (12) and (13) determine the minimum required battery to travel from 

any node to depot and battery recharging stations, respectively. Finally, constraints (14) 
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and (15) set binary restrictions while constraints (16) are the standard non-negativity 

constraints. 

Path Construction Model for Drone Transportation 

Contrary to vehicle transportation, no pre-existing paths are available for drone 

transportation. Therefore, it is crucial to obtain an optimal or near optimal path between 

each pair of nodes (𝑖, 𝑗) ∈ 𝑉|𝑖 < 𝑗 in order to realistically solve model [DR]. However, 

generating paths between each pair of nodes would be challenging due to a number of 

factors that impact drone transportation, such as restrictions set forward by the Federal 

Aviation Agency (FAA) (i.e., should operate under a ceiling of 400 feet), technological 

(e.g., limited battery and weight carrying capacities), geographical (i.e., cannot fly over a 

densely populated area), and environmental (e.g., wind speed and direction) factors [1]. 

All these factors are crucial since they severely limit the effective range in utilizing 

drones for the disaster surveillance/monitoring operations. This being the case, we now 

introduce a path construction model that can be used to construct paths between each pair 

of nodes in model [DR]. 

Let 𝐴𝑖𝑗 be the set of points to construct eligible segments between each pair of 

nodes (𝑖, 𝑗) ∈ 𝑉|𝑖 ≠ 𝑗, indexed by (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 . We considered a segment eligible based 

on the definition provided below:  

Definition 1: A segment is considered eligible if and only if the segment satisfies the 

restrictions set forward by FAA (i.e., should operate under a ceiling of 400 feet), 

technological (e.g., limited battery and weight carrying capacities), geographical (i.e., 
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cannot fly over a densely populated area), and environmental (e.g., wind speed and 

direction) factors. 

  Based on the above definition, we first construct eligible segments outside the 

path construction model so that the model produces optimal/feasible path(s) based on 

eligible segments. However, before delving into the details of eligible segments and 

optimal/feasible path construction model, the following set and parameters are introduced 

first: 

Set 

 𝑨𝒊𝒋: set of points to construct eligible segments between path (𝑖, 𝑗) ∈ 𝑉|𝑖 ≠ 𝑗, 

indexed by (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 

 

Parameters 

 𝒄𝒑𝒑′: unit battery consumption cost through segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 

 𝒖𝒑𝒑′: forward velocity of drone during moving through segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 

 𝑰𝒑𝒑′: length of segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 

 𝑷𝒑𝒑′: flying power required for moving drone through a segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 

 𝒕𝒑𝒑′:  time required for moving through segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 

 𝒉𝒑𝒑′/𝒉′
𝒑𝒑′:  minimum/maximum altitude of segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 

 𝒘𝒑𝒑′:  cross wind velocity at segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 

 𝜽𝒑𝒑′/𝜽′
𝒑𝒑′:  maximum deviation/turning angle 

 𝒕𝒊𝒋:  maximum flying time to cross path (𝑖, 𝑗) ∈ 𝑉 

 𝒍𝒊𝒋:  maximum length of path  (𝑖, 𝑗) ∈ 𝑉 

We ensure that the following conditions are satisfied to qualify for an eligible segment: 

 Let 𝐼𝑝𝑝′ be length of segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 . It is ensured that the length of 

segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 should be greater than a minimum segment length, 𝑙𝑚𝑖𝑛, 

i.e., 𝐼𝑝𝑝′ ≥ 𝑙𝑚𝑖𝑛.  

 Let ℎ𝑝𝑝′/ℎ′
𝑝𝑝′ be the minimum/maximum altitude of segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗. It is 

ensured that the following conditions are satisfied: (1) ℎ𝑝𝑝′ ≥ ℎ𝑚𝑖𝑛 and (2) 

ℎ𝑝𝑝′ ≤ ℎ𝑚𝑎𝑥; ∀(𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 where ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 x are the minimum and 
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maximum altitude, respectively, which are set forward by FAA and are required 

to be obeyed even under emergency situations. 

 Let 𝑃𝑝𝑝′ be the flying power required for moving drone through a segment 

(𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 . An eligible segment ensures that 𝑃𝑝𝑝′ ≤ 𝑃𝑚𝑎𝑥 where 𝑃𝑚𝑎𝑥 denotes 

the maximum flying power for a drone. 

 Cross wind velocity, 𝑤𝑝𝑝′ ,  impacts drones forward velocity, 𝑢𝑝𝑝′ , which is also a 

function of maximum deviation angle, 𝜃𝑝𝑝′ , for each segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 . It is 

ensured that condition 𝑢𝑝𝑝′ ≥
𝑤

𝑝𝑝′

sin(𝜃𝑝𝑝′)
; ∀(𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 is maintained to be 

considered for an eligible segment. Figure 2.2(a) depicts the effect of cross wind 

velocity 𝑤𝑝𝑝′ on drones forward velocity 𝑢𝑝𝑝′ through segment 𝑝𝑝′. 

 Turning angle is a crucial element which is usually required to be low in order to 

conserve energy in drone transportation. Environmental factors and initial starting 

point have significant impact on the number of turns and the size of turning angles 

of drones. The maximum turning angle, 𝜃𝑝𝑝′ , of a drone is determined based on 

the coordinates of segment (𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 , i.e., (𝑥𝑝𝑝′ , 𝑦𝑝𝑝′ , 𝑧𝑝𝑝′)  as follows 

𝑔
𝑝𝑝′
𝑇 𝑔

𝑝𝑝′+1

|𝑔𝑝𝑝′||𝑔𝑝𝑝′+1|
≥ cos(𝜃′

𝑝𝑝′) ; ∀(𝑝, 𝑝′) ∈ 𝐴𝑖𝑗 where 𝑔𝑝𝑝′ = ((𝑥𝑝𝑝′ −

𝑥𝑝𝑝′−1), (𝑦𝑝𝑝′ − 𝑦𝑝𝑝′−1)) and |𝑔𝑝𝑝′| is the length of 𝑔𝑝𝑝′. Figure 2.2(b) 

demonstrates the concept of turning angle through a segment from point 𝑝 to 

point 𝑐 and then to point 𝑝′ for a drone transportation. 

 

Figure 2.2  Effects of drone forward velocity and turning angle when moving through 

a segment 
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After identifying the eligible segments, using the potential points between each 

pair of nodes, i.e., ∀(𝑖, 𝑗) ∈ 𝑉|𝑖 < 𝑗, optimal paths between nodes 𝑖 and 𝑗 are determined 

based on a path construction model introduced below. However, before introducing the 

model, let us first introduce decision variable 𝑋′ ≔ {𝑋𝑃𝑃′} which is equal to 1 if eligible 

segment (𝑝, 𝑝′) is considered for path (𝑖, 𝑗); 0 otherwise. The following path construction 

model is applied to determine the optimal paths between each pair of nodes (𝑖, 𝑗) ∈ 𝑉|𝑖 <

𝑗. 

                         𝑃𝐶𝑖𝑗 ≔ ∑ 2𝑐𝑝𝑝′((
𝐼

𝑝𝑝′

𝑢𝑝𝑝′
)𝑃𝑝𝑝′)(𝑝,𝑝′)∈𝐴𝑖𝑗|𝑝≠𝑝′ 𝑋𝑃𝑃′                                    (17) 

Subject to 

∑ 𝑋𝑝𝑝′ =𝑝∈𝐴𝑖𝑗
∑ 𝑋𝑝′𝑝𝑝′∈𝐴𝑖𝑗|𝑝≠𝑝′  ∀𝑝′ ∈ 𝐴𝑖𝑗\{𝑖, 𝑗}                                                           (18) 

∑ 𝑋𝑖𝑝 = 1𝑝∈𝐴𝑖𝑗|𝑝≠𝑖                                                                                                            (19) 

∑ 𝑋𝑝𝑗 = 1𝑝∈𝐴𝑖𝑗|𝑝≠𝑗                                                                                                           (20) 

∑ 𝑋𝑝𝑝′ ≤ 1𝑝∈𝐴𝑖𝑗|𝑝≠𝑝′                     ∀𝑝′ ∈ 𝐴𝑖𝑗                                                                     (21) 

∑ 𝑋𝑝𝑝′ ≤ 1𝑝′∈𝐴𝑖𝑗|𝑝′≠𝑝                    ∀𝑝 ∈ 𝐴𝑖𝑗                                                                      (22) 

∑ 𝐼𝑝𝑝′𝑋𝑝𝑝′ ≤ 𝑙𝑖𝑗(𝑝,𝑝′)∈𝐴𝑖𝑗|𝑝≠𝑝′                                                                                            (23) 

∑ 𝑡𝑝𝑝′𝑋𝑝𝑝′ ≤ 𝑡𝑖𝑗(𝑝,𝑝′)∈𝐴𝑖𝑗|𝑝≠𝑝′                                                                                            (24) 

𝑋𝑝𝑝′ ∈ {0,1}                                   ∀(𝑝, 𝑝′) ∈ 𝐴𝑖𝑗                                                              (25) 

The objective function (17) minimizes the battery consumption costs, 

(2𝑐𝑝𝑝′ (
𝐼

𝑝𝑝′

𝑢𝑝𝑝′
) 𝑃𝑝𝑝′), associated with constructing segments between each pair of nodes 

(𝑖, 𝑗) ∈ 𝑉|𝑖 < 𝑗. Constraints (18) are the standard flow balance constraints which connect 

one segment to the next. Constraints (19) and (20) connect segment 𝑝 ∈ 𝐴𝑖𝑗 with the 
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source node 𝑖 ∈ 𝑉  and destination node 𝑗 ∈ 𝑉.  Constraints (21) and (22) ensure that no 

more than one in-degree and one out-degree segment are permissible in a point. 

Constraints (23) and (24) indicate that the length and flying time through segments 

(𝑝, 𝑝′) ∈ 𝐴𝑖𝑗|𝑝 ≠ 𝑝′should be restricted by the maximum length, 𝑙𝑖𝑗 , and flying time 𝑡𝑖𝑗, 

of path (𝑖, 𝑗) ∈ 𝑉, respectively. Finally, constraints (25) set the binary restrictions. 

Variable Fixing and Valid Inequalities 

By fixing the values of some decision variables and adding valid inequalities, we 

attempt to accelerate the computational performance of model [DP]. Let us first discuss 

few variable fixing techniques, which are applied when a particular condition(s) is 

satisfied. 

 Drone 𝑘 ∈ 𝐾 is not capable of flying through a trajectory connecting node 𝑖 ∈ 𝑉 

to node 𝑗 ∈ 𝑉 when its traveling time, i.e., 
𝑑𝑖𝑗

�̅�𝑘𝑠
, is equal or greater than the 

maximum allowable travel time 𝑡𝑘
𝑚𝑎𝑥, under its maximum speed level 𝑠 ∈ 𝑆.        

𝑋𝑖𝑗𝑘 = 0 & 𝑍𝑖𝑗𝑘𝑠 = 0 ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝑉|𝑖 ≠ 𝑗, 𝑠 = 𝑠𝑚𝑎𝑥|(
𝑑𝑖𝑗

𝑚𝑎𝑥𝑠∈𝑆{�̅�𝑘𝑠}
) ≥ 𝑡𝑘

𝑚𝑎𝑥           (26) 

 Drone 𝑘 ∈ 𝐾 is not capable of moving through a trajectory connecting node 𝑖 ∈ 𝑉 

to node 𝑗 ∈ 𝑉 when its battery consumption, i.e., 𝑟𝑘𝑠𝑑𝑖𝑗 , , is equal or greater than 

its battery capacity 𝑞𝑘, under its minimum speed level 𝑠 ∈ 𝑆.        

𝑋𝑖𝑗𝑘 = 0 & 𝑍𝑖𝑗𝑘𝑠 = 0 ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝑉|𝑖 ≠ 𝑗, 𝑠 = 𝑠𝑚𝑖𝑛|(𝑚𝑖𝑛𝑠∈𝑆{𝑟𝑘𝑠}𝑑𝑖𝑗) ≥ 𝑞𝑘       (27)                

In addition to fixing variables, the following valid inequalities are added to model [DP]. 

 The upper bound of the number of nodes visited by drone 𝑘 ∈ 𝐾, i.e., 𝑈𝐵𝑘, is 

determined in terms of trajectories’ distances amongst nodes. Define set 𝐷 as a 

non-decreasing order of 𝑑𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝑉|𝑖 ≠ 𝑗, where |𝑑𝑚| represents the value of 

the 𝑚𝑡ℎ member of set 𝐷, 𝑚 ≤ |𝐷|. 

∑ 𝑋𝑖𝑗𝑘 ≤(𝑖,𝑗)∈𝑉|𝑖≠𝑗 𝑈𝐵𝑘      ∀𝑘 ∈ 𝐾  | ∑ |𝑑|𝑚
𝑈𝐵𝑘
𝑚=1 ≤ 𝑡𝑘

𝑚𝑎𝑥                                          (28) 



www.manaraa.com

 

19 

 Symmetries may result due to the fact that a set of same dummy battery 

recharging stations may be visited by drones multiple times. To alleviate this 

problem, the following lexicographical ordering constraints can be applied for 

each ℱΦ
′  where ℱΦ

′  can be defined as a subset of battery recharging stations, i.e., 

ℱΦ
′ ⊂ ℱΦ, related to the same physical station and 𝑗g

′ ⊂ ℱΦ
′ , where 𝑔 ∈

{1, … , | ℱΦ
′ |} represents a set of non-decreasing order of the members belonging 

to ℱΦ
′ . The goal is to provide a priority of utilizing dummy recharging stations for 

the drones. 

∑ 𝑖𝑋𝑖𝑗g
′ 𝑘 ≥𝑖∈𝐼 ∑ 𝑖𝑋𝑖𝑗g+1

′ 𝑘𝑖∈𝐼       ∀𝑘 ∈ 𝐾, 𝑔 ∈ {1, … , | ℱΦ
′ | − 1}                                  (29) 

 Drones of the same type are deployed to inspect disaster-affected nodes by 

obeying the technological, geographical, and environmental restrictions set 

forward by FAA. Define 𝐾′ as a subset of drones belonging to the same type, i.e., 

𝐾′ ∈ 𝐾, and 𝑘g
′ ⊂ 𝐾′, where 𝑔 ∈ {1, … , | 𝐾′|} which represents a set of non-

decreasing order of the members belonging to 𝐾′ to determine the priority of 

utilizing drones of the same type. 

𝑋0𝑗𝑘g
′ ≥ 𝑋0𝑗𝑘g+1

′       ∀𝑗 ∈ 𝑉, 𝑔 ∈ {1, … , (| 𝐾′| − 1)}                                                 (30) 

(∑ ∑ 𝑑𝑖𝑗𝑍
𝑖𝑗𝑘g

′ 𝑠(𝑖,𝑗)∈𝑉|𝑖≠𝑗𝑠∈𝑆 ) 

�̅�
𝑘g

′ 𝑠

≥
(∑ ∑ 𝑑𝑖𝑗𝑍

𝑖𝑗𝑘g+1
′ 𝑠(𝑖,𝑗)∈𝑉|𝑖≠𝑗𝑠∈𝑆 ) 

�̅�
𝑘g+1

′ 𝑠

 ∀ 𝑔 ∈ {1, … , |𝐾′|−1}                   (31) 

 

∑ ∑ 𝑐𝑖𝑗𝑘g
′ 𝑠(𝑖,𝑗)∈𝑉|𝑖≠𝑗 ((𝛽𝑘𝑔

′ + 𝜆𝑘𝑔
′ ℎ𝑘𝑔

′ ) (
𝑑𝑖𝑗

�̅�
𝑘𝑔

′ 𝑠

) + 𝑝𝑘𝑔
′ 𝑠

𝑡𝑢𝑟𝑛 (
𝑛𝑖𝑗�̅�𝑖𝑗

𝑤
𝑘𝑔

′ 𝑠
𝑡𝑢𝑟𝑛) +𝑠∈𝑆

(√(𝛤𝑘𝑔
′ �̅�𝑘𝑔

′ 𝑠𝑝
𝑘𝑔

′
𝑎𝑐𝑐) 𝑔1 +  (

2𝑝
𝑘𝑔

′
𝑖𝑛𝑡

�̅�
𝑘𝑔

′ 𝑠

) 𝑔2 + √(𝛤𝑘𝑔
′ �̅�𝑘𝑔

′ 𝑠𝑝
𝑘𝑔

′
𝑑𝑒𝑐)𝑔3)𝑑𝑖𝑗)𝑍𝑖𝑗𝑘𝑔

′ 𝑠) ≥

∑ ∑ 𝑐𝑖𝑗𝑘g+1
′ 𝑠(𝑖,𝑗)∈𝑉|𝑖≠𝑗 ((𝛽𝑘𝑔+1

′ + 𝜆𝑘𝑔+1
′ ℎ𝑘𝑔+1

′ ) (
𝑑𝑖𝑗

�̅�
𝑘𝑔+1

′ 𝑠

) + 𝑝𝑘𝑔+1
′ 𝑠

𝑡𝑢𝑟𝑛 (
𝑛𝑖𝑗�̅�𝑖𝑗

𝑤
𝑘𝑔+1

′ 𝑠
𝑡𝑢𝑟𝑛 ) +𝑠∈𝑆

(√(𝛤𝑘𝑔+1
′ �̅�𝑘𝑔+1

′ 𝑠𝑝
𝑘𝑔+1

′
𝑎𝑐𝑐 ) 𝑔1 +  (

2𝑝
𝑘𝑔+1

′
𝑖𝑛𝑡

�̅�
𝑘𝑔+1

′ 𝑠

) 𝑔2 +

√(𝛤𝑘𝑔+1
′ �̅�𝑘𝑔+1

′ 𝑠𝑝
𝑘𝑔+1

′
𝑑𝑒𝑐 ) 𝑔3)𝑑𝑖𝑗)𝑍𝑖𝑗𝑘𝑔+1

′ 𝑠           ∀ 𝑔 ∈ {1, … , |𝐾′|−1}                               (32)  
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CHAPTER III                              

SOLUTION METHODOLOGY 

The initial computational experiences expose our inability to solve model [DR] in 

largescale problem settings. However, there is a craving need to solve large-scale 

instances of model [DR] in a reasonable amount of time to perform a quick initial 

inspection of any disaster-affected region. To serve this purpose, two solution algorithms, 

known as an Adaptive Large Neighborhood Search (ALNS) algorithm and a Modified 

Backtracking Adaptive Threshold Accepting (MBATA) algorithm, are proposed in this 

section. Before delving into the details of the proposed algorithms, we discuss an initial 

route generation mechanism that can be applied in both ALNS and MBATA algorithm. 

Initial Routes Generation Mechanism 

Our study utilizes nearest neighbor heuristic algorithm [28] to generate initial 

feasible routes for the drones. Contrary to using random initial routes (IR), the algorithm 

is capable of generating high quality initial feasible routes which may help in reducing 

the overall computational time of the ALNS/MBATA algorithm. The algorithm proceeds 

by gradually adding arcs starting from drone depot to all nearest disaster-affected nodes 

within a determined range. The insertion of a disaster-affected node is determined based 

upon the allowable travel time and remaining battery level of drone 𝑘 ∈  𝐾 (i.e., 𝑡𝑘
𝑚𝑎𝑥and 

Yik, respectively) as well as the availability of battery recharging stations within the 

determined range. The next inserted node in a route can be a disaster-affected node, a 
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battery recharging station, or drones depot based upon arrival time to the node, 𝜏𝑖𝑘, and 

remaining battery level, 𝑌𝑖𝑘, respectively. The process is repeated to construct initial 

feasible routes for all the remaining drones 𝑘 ∈  𝐾. 

Adaptive Large Neighborhood Search (ALNS) Algorithm 

The Adaptive Large Neighborhood Search (ALNS) Algorithm, first introduced by 

Ropke and Pisinger [29], belongs to the class of very large-scale neighborhood search 

algorithm [30]. The authors essentially extended the large neighborhood search algorithm 

developed by Shaw [31], while allowing the possibility of implementing multiple 

destruction and insertion operators simultaneously to generate high-quality solutions. 

ALNS algorithm proceeds by defining a set of destruction and insertion operators 

in an attempt to develop high quality routes for the drones. Amongst a set of destruction 

and insertion operators, only one type of destruction operator, i.e., 𝑜𝑑 ∈ 𝐷, along with 

one type of insertion operator, i.e., 𝑜𝑟 ∈ 𝑅, are selected to generate a new solution in each 

iteration of the ALNS algorithm. Note that in each iteration of the ALNS algorithm, the 

choice of different types of 𝑜𝑑 and 𝑜𝑟 operators is non-trivial since they are crucial for the 

success of the ALNS algorithm. This selection is governed by Roulette Wheel Selection 

Mechanism proposed by Ropke and Pisinger [29], where each operator 
𝑜𝑑

𝑜𝑟
 has a weight 

𝑤𝑜𝑑

𝑤𝑜𝑟

 and an score 
𝜋𝑜𝑑

𝜋𝑜𝑟

 which is obtained from the prior performance of the operator. 

Roulette wheel mechanism is the most common and widely used selection mechanism 

which assigns a selection probability to each member of an operator proportional to its 

relative fitness. Irrespective to the type of the selection mechanism employed, 𝑝𝑜𝑑
, 
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belonging to operator type 𝑜𝑑 , is calculated as 𝑝𝑜𝑑
≔

𝑤𝑜𝑑

∑ 𝑤𝑜𝑑𝑑∈𝐷
, where each operator is 

assumed to occupy some space in a pie graph proportional to its fitness value, i.e., 

probability of selection. Likewise, 𝑝𝑜𝑟
≔

𝑤𝑜𝑟

∑ 𝑤𝑜𝑟𝑟∈𝑅
. In the first iteration of the ALNS 

algorithm, all operators are assumed to be equally likely, i.e., 𝑝𝑜𝑑
≔

1

|𝐷|
;  ∀𝑑 ∈ 𝐷 and 

𝑝𝑜𝑟
≔

1

|𝑅|
;  ∀𝑟 ∈ 𝑅 along with zero score, i.e., 𝜋𝑜𝑑

= 0; ∀𝑑 ∈ 𝐷 and 𝜋𝑜𝑟
= 0; ∀𝑟 ∈ 𝑅. 

At ith iteration of the ALNS algorithm, 𝑝𝑜𝑧
𝑖 (𝑧 ∈ {𝑑, 𝑟}) is updated as follows: 

𝑝𝑜𝑧
𝑖 ≔ 𝑝𝑜𝑧

𝑖−1(1 − 𝜂) + 𝜂 (
𝜋𝑜𝑧

𝑤𝑜𝑧

), where 𝜂 is a reaction factor generated from a uniform 

distribution, 𝜂 ∈ [0,1], to show a reaction to changes on the operator performance. In 

addition to updating the probability of selecting each operator in each iteration of the 

ALNS algorithm, 𝜋𝑜𝑧
(𝑧 ∈ {𝑑, 𝑟}) is updated as follows: the score is increased by 𝜎1 when 

the implementation of the operator results in a global best solution; otherwise, the score is 

increased by 
𝜎2

𝜎3
 when the fitness value of the obtained solution is better/worse than the the 

fitness value of the solution generated in the previous iteration. The relationship between 

different amounts of increase in the score is 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ 0. Two terminations criteria 

are adopted to terminate the ALNS algorithm as (1) the maximum iteration limit (𝑚𝑎𝑥𝑖𝑡𝑟) 

and (2) the maximum computational time limit (𝑚𝑎𝑥𝐶𝑇). 

ALNS Operators 

We now provide a brief description of different types of destruction and insertion 

operators used in the ALNS algorithm. A destruction operator removes a visited disaster-

affected node(s) from a route(s), while an insertion operator inserts a disaster-affected 
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node(s) into a route(s). A removal list for visited disaster-affected nodes, 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 , and a 

return list for unvisited disaster-affected nodes, 𝐿𝑅𝑒𝑡𝑢𝑟𝑛, are developed for destruction 

and insertion operators, respectively, where 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 ∩ 𝐿𝑅𝑒𝑡𝑢𝑟𝑛 = ∅. It is worth noting 

that all disaster-affected nodes (IR) are inserted into 𝐿𝑅𝑒𝑡𝑢𝑟𝑛 before implementing the 

operators in the ALNS algorithm, i.e., 𝐿𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐼, 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 = ∅. After each iteration, 

the new solution is determined based on updated 𝐿𝑅𝑒𝑡𝑢𝑟𝑛. In the following, five 

destruction and four insertion operators are discussed that can be used within the ALNS 

algorithm. 

Destruction Operators: 

Random removal (RR): This operator simply chooses 𝑝 visited disaster-affected 

nodes randomly from 𝐿𝑅𝑒𝑡𝑢𝑟𝑛 according to a discrete uniform distribution, 

U[1,|(𝐿𝑅𝑒𝑡𝑢𝑟𝑛)𝑃𝑟|], inserts them into 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙, and updates 𝐿𝑅𝑒𝑡𝑢𝑟𝑛. Here, (𝐿𝑅𝑒𝑡𝑢𝑟𝑛)𝑃𝑟 is 

the set of visited disaster-affected nodes determined in the previous iteration of the 

algorithm. The value chosen for 𝑝(𝑝 < |𝐼|) has an impact on the number of iterations of 

the ALNS algorithm. The random selection of visited disaster-affected nodes increases 

the diversification into the search mechanism. 

Worst removal (WR): This operator removes visited disaster-affected nodes 

from LReturn with high-visited costs in a hope of replacing them by disaster-affected 

nodes with low-visited costs from 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙. Then, both 𝐿𝑅𝑒𝑡𝑢𝑟𝑛 and 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 are 

updated. This operator simply chooses 𝑞 visited disaster-affected nodes randomly from 

𝐿𝑅𝑒𝑡𝑢𝑟𝑛 according to a non-increasing order of visited costs, inserts them into 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙, 

and updates 𝐿𝑅𝑒𝑡𝑢𝑟𝑛. More precisely, the visited cost of a disaster-affected node is 

defined as a difference between the cost when the disaster-affected node is inserted into a 
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route (i.e., visited) and removed from that route (i.e., unvisited). Then, this visited cost is 

normalized by dividing it to the average visited cost of all possible disaster-affected 

nodes which can be visited on this route (equal or less than 𝑞 disaster-affected nodes). 

The purpose of this normalization is to avoid repeatedly choosing disaster-affected nodes 

located far away from the remaining ones. 

Route removal (RR): This operator removes all disaster-affected nodes visited 

on a route from 𝐿𝑅𝑒𝑡𝑢𝑟𝑛. The target route is selected randomly from the set of developed 

routes. Then, insert all disaster-affected nodes visited on this route into 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 and 

update both 𝐿𝑅𝑒𝑡𝑢𝑟𝑛 and 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙. 

History-based removal (HKR): This operator is similar to the neighbor graph 

removal operator introduced by Ropke and Pisinger [32]. This operator preserves a 

memory of the position-based value for each disaster-affected node 𝑖 ∈ 𝐼 which is 

determined as the sum of the distances between disaster-affected node 𝑖 ∈ 𝐼 with its 

preceding and following disaster-affected nodes, all visited on the same route. The 

position-based value of a disaster-affected node 𝑖, 𝑝𝑖, can be determined as 𝑝𝑖 ≔

𝑑(𝑖−1,𝑖) + 𝑑(𝑖,𝑖+1), where 𝑑(𝑖,𝑗) represent a euclidean distance between two consecutive 

disaster-affected nodes 𝑖 and 𝑗 visited on a route. This operator is designed in such a way 

that the best position value of disaster-affected node 𝑖, 𝑝𝑖
′, , is updated to be the minimum 

of all 𝑝𝑖 values related to the previous iterations of the algorithm. This operator selects 

disaster-affected node 𝑖′ on a route with the maximum deviation from its best position 

value, i.e., 𝑖′ = (𝑝𝑖 − 𝑝𝑖
′)𝑖∈𝐿𝑅𝑒𝑡𝑢𝑟𝑛

𝑎𝑟𝑔𝑚𝑎𝑥
. Then, disaster-affected node 𝑖′ is removed from 

𝐿𝑅𝑒𝑡𝑢𝑟𝑛 and inserted to 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙. Finally, both 𝐿𝑅𝑒𝑡𝑢𝑟𝑛 and 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 are updated. 
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Neighborhood removal (NR): This operator removes a disaster-affected node 

with the maximum distance deviation from the average distance of its corresponding 

route. Consider a set of developed routes as 𝑅ℎ in the hth iteration of the algorithm. The 

average distance of route 𝑟 ∈ 𝑅ℎ as a set of 𝑛𝑟 disaster-affected nodes sorted by visited 

regions’ numbers, 𝑟 = {𝑖1, 𝑖2, … , 𝑖𝑛}, is determined as �̅�𝑟 ≔
(∑ 𝑑(𝑖1,𝑖2)(𝑖1,𝑖2)∈𝑟|𝑖1≠𝑖2

)

(𝑛𝑟−1)
, where 

𝑑(𝑖1,𝑖2)is a euclidean distance between two consecutive disaster-affected nodes visited on 

route 𝑟. Then, remove each disaster-affected node 𝑗 from its route and recalculate 

�̅�𝑟\{𝑗}, ∀𝑟 ∈ 𝑅. Afterwards, a disaster affected node 𝑠 with the maximum deviation 

between �̅�𝑟 and �̅�𝑟\{𝑠} is selected, removed from 𝐿𝑅𝑒𝑡𝑢𝑟𝑛, and inserted to 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙. 

Finally, both  𝐿𝑅𝑒𝑡𝑢𝑟𝑛 and 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 are updated. 

Insertion Operators: 

Greedy insertion (GI): This operator repeatedly inserts disaster-affected nodes 

of 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 in the best possible position of existing routes based upon its insertion cost 

which is calculated as (𝑝𝑗𝑖𝑘
′ )𝑖∈𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙,(𝑗,𝑘)∈𝐿𝑅𝑒𝑡𝑢𝑟𝑛

𝑎𝑟𝑔𝑚𝑖𝑛
 and 𝑝𝑗𝑖𝑘

′ ≔ 𝑑(𝑗,𝑖) + 𝑑(𝑖,𝑘) − 𝑑(𝑗,𝑘), 

where 𝑗 an 𝑘 are consecutive disaster-affected nodes visited on the same route before 

inserting disaster-affected node 𝑖 between them. In other words, 𝑗 and 𝑘 are disaster-

affected nodes visited immediately before and after inserted disaster-affected node 𝑖 on 

the developed route. 

Greedy insertion with noise function (GIN): Although this operator performs 

similar to greedy insertion operator, it considers a degree of freedom as a noise term. The 

insertion cost based on this degree of freedom is expressed as 𝑝𝑗𝑖𝑘
′ ≔ 𝑑(𝑗,𝑖) + 𝑑(𝑖,𝑘) −

𝑑(𝑗,𝑘) + 𝛼𝜌𝛿, where 𝛼 is the maximum euclidean distance between disaster-affected 



www.manaraa.com

 

26 

nodes 𝑗, 𝑖, and 𝑘; 𝜌 is a noise parameter used for the diversification which is set to 0.1; 

and 𝛿 is a random number obtained from [−1, 1]. 

Regret insertion (RI): For each disaster-affected node 𝑖 of 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙, 𝛿𝑓𝑖
𝑗
 

designates the insertion cost of disaster-affected node 𝑖 visited on the 𝑗𝑡ℎ best route at its 

best position. Disaster-affected node 𝑖′ is chosen as 𝑖′ = (𝛿𝑓𝑖
1 − 𝛿𝑓𝑖

2)𝑖∈𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙

𝑎𝑟𝑔𝑚𝑎𝑥
, where 

𝛿𝑓𝑖
1 and 𝛿𝑓𝑖

2  are the first and second best insertion cost of disaster-affected node 𝑖 

visited on the first and second best route, respectively, at their best positions. Then, both 

𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 and 𝐿𝑅𝑒𝑡𝑢𝑟𝑛 are updated and this insertion mechanism stops whenever all 

disaster-affected nodes are inserted to the routes, i.e., 𝐿𝑅𝑒𝑚𝑜𝑣𝑎𝑙 = ∅. 

Regret insertion with noise (RIN): Similar to greedy insertion with noise 

function, this operator is an extension of the regret insertion operator using the same 

noise function described in the GIN operator. 

After implementing any operator described above, the developed/current routes 

might be updated as follows: 

 By removing a disaster-affected node(s) from a route(s), the necessity of visiting 

an existing battery recharging station(s) on the route is surveyed. If 𝑞𝑘 of 𝑘th 

drone assigned to the route is capable of visiting remained disaster-affected nodes 

on the route without visiting one or more battery recharging stations, those 

stations can be removed from the route. 

 By inserting a disaster-affected node(s) to a route(s), the feasibility of the 

developed route(s) must be checked with respect to 𝑡𝑘
𝑚𝑎𝑥 and 𝑞𝑘 of 𝑘th drone 

assigned to the developed route. If drone 𝑘 ∈ 𝐾 is not capable of visiting all 
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disaster-affected nodes on the developed route due to violation on 𝑡𝑘
𝑚𝑎𝑥 , the 

developed route is ignored. In addition, if drone 𝑘 ∈ 𝐾 is not capable of visiting 

all disaster-affected nodes on the developed route due to violation on 𝑞𝑘, one or 

more battery recharging stations are inserted into the developed route to satisfy 

the drone requirement. 

The pseudo-code of the ALNS algorithm is provided in Algorithm 1. 
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Algorithm 1: ALNS 

 

Modified Backtracking Adaptive Threshold Accepting (MBATA) Algorithm 

The Modified Backtracking Adaptive Threshold Accepting (MBATA) algorithm 

is inspired from the works proposed by Tarantilis et al. [33, 34], where a non-monotonic 

schedule is established inside the traditional threshold accepting algorithm. The MBATA 

algorithm applies and explores most of the important features of the basic backtracking 



www.manaraa.com

 

29 

adaptive threshold accepting (BATA) algorithm including threshold parameter, 

backtracking, move evaluation, strategic oscillation, setting acceptance criteria, 

intensification, and diversification. However, the unique difference between the two 

algorithms i.e., BATA and MBATA algorithm, is related to the shaking mechanism 

implemented inside the MBATA algorithm. After finding the best solution and towards 

the end of the search process, shaking the entire solutions might be the only way for not 

being trapped in local optima and, consequently, generate better results. To summarize, 

the MBATA algorithm operates at two dependent loops moving back and forth as 

follows: an inner loop to diversify into the solution space; an outer loop to intensity the 

quality of the solutions. In the following, some features of the MBATA algorithm are 

explained in details. 

Local Search 

Local search is performed in an inner loop of the MBATA algorithm. Defining 

the neighborhoods play a crucial role in local search since they determine the extent of 

the solution space explored. The termination of the local search in each iteration of the 

algorithm is determined based on the maximum number of iterations, 𝑚𝑎𝑥𝑖𝑛𝑛𝑒𝑟, in the 

inner loop. We now discuss four different types of inter-route and intra-route moves 

which are applied in the local search operation. 

Inter-route moves:  

The inter-route neighborhood structures include a single-insertion, double-

insertion, triple-insertion, and swap moves. These moves are capable of converting a 

route to another one as well as eliminating criss-crosses of edges related to the same or 

different routes. A brief description of these inter-route moves are provided below. 



www.manaraa.com

 

30 

Single insertion: A single node 𝑖 ∈  𝑉 is randomly selected and removed from its 

current route. Afterwards, a trial insertion of node 𝑖 ∈  𝑉 is determined on the remaining 

routes containing either the closest or furthest insertion points of node 𝑖 ∈  𝑉. The 

selection of the closest or the furthest node depends on a Bernoulli distribution. Although 

this concept has been adopted by several researches [34], most authors use a parameter 𝛿 

as a maximum distance measure so that node 𝑖 ∈  𝑉 is only inserted into a route with 𝛿 

unit of distance from a particular node. This partially restricts the diversification into the 

solution space; hence, in this study, both the minimum and maximum distance measures 

are used. 

Double insertion: Similar to the single insertion move, a double insertion move 

operates on a pair of consecutive nodes (𝑖, 𝑗) belonging to the same route. In other words, 

two consecutive nodes 𝑖 ∈  𝑉 and 𝑗 ∈  𝑉 are inserted into a new route including at least 

one node which is either closest or farthest to any of inserted nodes 

Triple insertion: Likewise, in a triple insertion move, a consecutive chain of 

three nodes (𝑖, 𝑗, 𝑘) are selected, removed from their original route, and inserted into the 

destination route including at least one node which is either closest or furthest to any of 

the inserted nodes. 

Swap: The position of node 𝑖 ∈  𝑉 from a route is exchanged with the position of 

node 𝑗 ∈  𝑉 from a different route. This is only permitted if and only if selected node 𝑖 is 

associated to at least one node 𝑗, which is either closest or furthest from that node. 

Intra-route moves: 

Following any possible improvement by implementing an inter-route move(s), the 

inner loop implements four well-known intra-route neighborhood moves including 



www.manaraa.com

 

31 

reinsertion, exchange, Or-opt2, and Or-opt3 [35,36]. In the following, these moves are 

briefly described. 

Reinsertion: One node is removed from its current position in a route and 

inserted into another position of the same route. 

Exchange: The position of a node in a route is changed with the position of 

another node in the same route. 

Or-opt2: Two adjacent nodes are removed and inserted into another position of 

the same route. 

Or-opt3: Three adjacent nodes are removed and inserted into another position of 

the same route. 

After implementing any inter-or intra-route move on a particular iteration of the 

local search, the newly generated solution 𝑠′is compared with the solution generated in 

the previous iteration, 𝑠, i.e., c(𝑠′) − c(s) < 𝑇ℎ where c(s) and c(𝑠′) represents the 

objective function value of 𝑠 and 𝑠′, respectively and 𝑇ℎ  represents a predefined 

threshold value at ℎ𝑡ℎ iteration of the algorithm (𝑇ℎ  > 0). If this condition is satisfied, 

then 𝑠 is replaced by 𝑠′. However, if c(𝑠′) is less than c(𝑠𝑏𝑒𝑠𝑡), 𝑠𝑏𝑒𝑠𝑡is set to 𝑠′ , where 

𝑠𝑏𝑒𝑠𝑡 is the best solution obtained so far during the iterations of the algorithm. On the 

other hand, if c(𝑠′) − c(s) > 𝑇ℎ, no changes are made on 𝑠, 𝑠𝑏𝑒𝑠𝑡, and 𝑠′. Once an 

improved solution is found, then intra-route moves are implemented. 

Important Notes: 

 All the inter- and intra-route moves are not applied for each iteration of 

the MBATA algorithm since it not only increases the computational time, 

but also might lead to unwarranted diversification of the solution space. 
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Hence, these moves are implemented randomly by the local search of the 

inner loop. 

 Any selected node(s) removed from its original route is inserted into 

another route, either after/before drones depot or between any two nodes 

of the selected route. In addition, in relation to the double and triple 

insertion moves of inter-route moves as well as the Or-opt2 and Or-opt3 

moves of intra-route moves, different orders of the position of selected 

nodes in the new route provide more neighbor solutions. 

 If an inter- or intra-route move(s) results in an infeasible or lower-quality 

solution, this move is discarded and another move is randomly chosen. 

This procedure continues until a better solution is generated or the 

maximum number of iterations for applying inter- and intra-route moves is 

reached, i.e., 𝑚𝑎𝑥𝑖𝑛𝑡𝑒𝑟 and 𝑚𝑎𝑥𝑖𝑛𝑡𝑟𝑎, respectively. 

 An infeasible solution is a solution which violates the maximum allowable 

travel time and/or battery capacity of drones. 

 An inserted node(s) in a particular position of a route is a disaster-affected 

node(s), a battery recharging station(s), or a combination of both. 

Threshold Controlling Procedure 

A threshold controlling procedure is performed on the outer loop of the MBATA 

algorithm which is depending upon the solutions quality obtained from the inner loop. 

The value of threshold 𝑇ℎ is decreased if c(𝑠′) − c(s) < 𝑇ℎ is satisfied at least once during 

the iterations of the inner loop. In other words, a solution has been found to be better than 
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the current solution at least once. On the other hand, if no improvement is obtained, the 

value of 𝑇ℎ is increased or backtracked. However, during the backtrack step, the amount 

of increase of 𝑇ℎ is always preserved to be smaller compared to the amount of last 

increase in 𝑇ℎ′(∀ℎ′ ∈ {1,2, … , ℎ − 1}), before the backtrack step. This ensures that there 

is a very tight balance between the diversification and intensification on the solution 

space. 

If c(𝑠′) − c(s) < 𝑇ℎand  c(𝑠′) ≤ c(s) are satisfied for at least one iterations of the 

inner loop, 𝑇ℎ+1  is decreased and set as 𝑇ℎ+1 ≔ 𝑇ℎ ∗ 𝑇𝑡; otherwise, if c(𝑠′) − c(s) < 𝑇ℎ 

and c(𝑠′) > c(s) for all iterations of the inner loop, 𝑇ℎ+1 is increased and set as 𝑇ℎ+1 ≔

𝑇ℎ ∗ (1 + 𝑇𝑖). Note that 𝑇𝑡 and 𝑇𝑖 are the reduction and increase rates of 𝑇ℎ, where 

{𝑇𝑡, 𝑇𝑖} ∈ [0,1]. If 𝑇ℎ is not able to provide a better solution at least once in one of the 

iterations of the inner loop, i.e., c(𝑠′) − c(s) > 𝑇ℎ, the value of 𝑇ℎ+1 is increased 

(backtracked) close to its previous value. This new value is represented as 𝑇ℎ+1 ≔

𝑇ℎ−1 − (𝑇ℎ−1 − 𝑇ℎ) ∗ (1 − 𝑇𝑏), where 𝑇𝑏 is the percentage of threshold backtracking 

(𝑇𝑏 > 0). The termination of the MBATA algorithm is determined based on the 

maximum number of iterations of the outer loop i.e., 𝑚𝑎𝑥𝑜𝑢𝑡𝑒𝑟. 

Shaking 

The shaking technique is applied when two consecutive outer loops failed to 

generate a better solution. This technique has been applied extensively by many 

researchers in Variable Neighborhood Search (VNS) algorithm when a local optimum is 

found within a given neighborhood [37]. This technique is applied by significantly 

transferring the solution space to another area in the hope of obtaining a better solution; 
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otherwise, the new solution moves towards the original solution space in the prosecution 

of the search. However, too many transformation of the solution space might potentially 

lead to an inefficient solution space, where it would be challenging to find good-quality 

solutions. Hence, a trade-off between these two extremes is to perform the shaking 

technique in such a way that it does not fundamentally change the solution space while 

not to be trapped in local optima. In this study, the shaking technique is performed by 

randomly removing a subset of nodes from their current positions to different routes and 

then reinserting them to the existing routes based on the minimum insertion cost. This 

cost is referred to the disaster-affected nodes visited at the minimum cost. It is worth 

noting that the shaking technique is performed even if an generated route(s) is found to 

be infeasible. This being the case, the position reassignment of nodes to routes is 

necessary to ensure the feasibility of the developed routes. The pseudo-code of the 

MBATA algorithm is provided below. 
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Algorithm 2: MBATA 
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CHAPTER IV  

COMPUTATIONAL STUDY 

The exposition of this section is as follows. First, a brief description of the data 

used to generate different test instances is provided. Second, the computational 

performances of the proposed ALNS and MBATA algorithms in solving model [DR] 

over GUROBI are provided. Finally, a real-life case study to demonstrate the 

applicability of the proposed optimization model to serve a disaster-affected county in 

Mississippi is provided. Additionally, sensitivity analyses are carried out to study the 

impact of battery recharging station distributions, maximum travel time and required 

recharging time of drones as well as drones’ depot location on the overall routing cost are 

analyzed. All numerical experiments are coded in Python 2.7 on a desktop computer 

equipped with an Intel Core i7 processor 3.60 GHz and a 16 GB RAM. The optimization 

solver used is GUROBI Optimizer 7.0 [38]. 

Data Description 

Drone Parameters: In this study we consider two types of drones: (1) Vanguard 

(shown in Figure 4.1(a)2 ) and (2) Mavic Pro (shown in Figure 4.1(b)3 ). Although 

Vanguard is a long range and high endurance drone over Mavic Pro, this drone is 

approximately 40 times more expensive than Mavic Pro. However, both drones are 

                                                 
2 Available from: https://www.airbornedrones.co/vanguard/ 
 
3 Available from: https://www.dji.com/ 
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equipped with high resolution cameras (4K camera) that make them suitable for disaster-

affected region monitoring and surveillance operations. Table 4.1 provides the 

characteristics of two types of drones considered in this study. 

Table 4.1 Attributes of utilized drones [39, 40] 

Characteristic Vanguard Mavic Pro Unit 

Maker Airborne drones DJI - 

Speed 40 40 mph 

Range 22.0 4.3 mile 

Endurance 94 27 Min 

Maximum altitude 15,000 16,000 ft 

Weight 2.0 0.7 kg 

 

In addition to specifying the characteristics of drones, the following parameters 

are set in the path construction model (discussed in Section 2.2) to construct paths 

between each pair of nodes: 𝜃𝑝𝑝′ = 450;   𝜃𝑝𝑝′
′ = 300;  𝑝𝑚𝑎𝑥 = 75,000 𝑊; 𝑙𝑚𝑖𝑛 =

0.1 𝑚𝑖𝑙𝑒;  ℎ𝑚𝑖𝑛 = 200 𝑓𝑡;  ℎ𝑚𝑎𝑥 = 400 𝑓𝑡; and 𝑡𝑖𝑗 = 40 𝑚𝑖𝑛. Surrounding environment 

parameters 𝑤𝑝𝑝′(𝑚𝑝ℎ) and 𝑢𝑝𝑝′(𝑚/𝑠) are set based on the weather condition on each 

segment. For the sake of simplicity, the maximum deviation and turning angles, cross 

wind velocity, and drone forward velocity are considered same for all eligible segments 

between each pair of disaster-affected nodes. Furthermore, Table 4.2 summarizes the key 

drone input parameters used in model [DR]. We set the average drone velocities �̅�𝑘𝑠 =

{20,30,35}(𝑚𝑝ℎ) under three different types of speed levels 𝑠 ∈ 𝑆. For the sake of 

simplicity, the battery consumption rate (𝑐𝑖𝑗𝑘𝑠), angular velocity  (𝑤𝑘𝑠
𝑡𝑢𝑟𝑛), and required 

power for each turn (𝑝𝑘𝑠
𝑡𝑢𝑟𝑛), are considered constant for each speed level 𝑠 ∈ 𝑆. Note that 

choosing a payload for each type of drones, Γ𝑘, guarantee to carry the camera(s) in 

relation to the standard operations of the drones. Finally, we set the acceleration phase 
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(𝑔1), intermediate phase (𝑔2), and deceleration phase (𝑔3) to be 5%, 90%, and 5%, 

respectively, for each trajectory between each pair of disaster-affected nodes. 

 

Figure 4.1 The types of drone used for monitoring/inspecting disaster-affected region 

Illustration of Geographical Location: Our study uses Hancock county from 

Mississippi State as a test bed to visualize and validate the modeling results. Hancock 

county, one of the highly disaster-affected coastal counties in Mississippi along with 

Harrison and Jackson counties, has been significantly impacted by Hurricanes and 

Tornadoes over the last few decades [4]. Therefore, in our study we investigate how 

drones can be economically routed for performing a preliminary damage assessment for 

the Hancock county following a natural catastrophe. Figure 4.2 shows the geographical 

locations of Mississippi State, three aforementioned counties, and selected county as the 

base case for analysis. 
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Figure 4.2 Illustration for geographical location of Hancock county [4] 

For the case study, we randomly distribute 65 disaster-affected nodes and 13 battery 

recharging stations in the tested region i.e., |Ι|=65 and|ℱ| = 13. Further, we place the 

drones depot at the center of the county. Figure 4.3 shows the geographical locations of 

the disaster-affected nodes, battery recharging stations, and drones depot on Hancock 

county. We assume 20 Mavic Pro and 10 Vanguard drones are available with 50 minutes 

and 120 minutes maximum travel time, respectively. The drone recharging time is set to 

be 5 minutes. 

Computational Performance of the Proposed Algorithms 

The efficiency and effectiveness of the algorithms proposed previously are 

evaluated by solving model [DR]. In relation to the research problem, there is no 

benchmark instances available in the literature to evaluate the performance of the 

proposed algorithms. Hence, a new set of problem instances are generated with respect to 

three geographical distributions of disaster-affected regions. In the following, the 

numerical experiments conducted with the newly generated set of problem instances are 

explained. 
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Table 4.2 Key parameters 

Parameters Vanguard Mavic Pro Unit 

𝑚 10 20 - 

𝑞𝑘 5,100 3,830 mAh 

𝜓𝑗𝑘 5 5 min 

𝑒𝑗𝑘 0.012 0.012 $ 

𝑓𝑗𝑘 0.01 0.01 $ 

𝑐𝑖𝑗𝑘  0.06 0.06 $ 

𝑐𝑖𝑗𝑘𝑠
∗  0.06 0.06 $ 

𝑡𝑘
𝑚𝑎𝑥 120 50 min 

�̅�𝑘𝑠
∗  28 28 mph 

𝑟𝑘𝑠 1.0 1.0 - 

𝑝𝑘
𝑎 12,000 12,000 W 

𝑝𝑘
𝑑 5,000 5,000 W 

ℎ𝑘 400 400 ft 

𝑣𝑘
𝑎  30 30 mph 

𝑣𝑘
𝑑 20 20 mph 

𝛽𝑘 90,000 90,000 W 

𝜆𝑘 1.0 1.0 - 

𝑤𝑘𝑠
𝑡𝑢𝑟𝑛 2.1 2.1 rad/s 

�̅�𝑖𝑗 1.0 1.0 rad 

𝑛𝑖𝑗 3 3 - 

𝑝𝑘𝑠
𝑡𝑢𝑟𝑛 1,000 1,000 W 

Γ𝑘 2.0 1.2 kg 

𝑔1 5% 5% - 

𝑔2 90% 90% - 

𝑔3 5% 5% - 

𝑝𝑘
𝑎𝑐𝑐 90,000 90,000 W 

𝑝𝑘
𝑖𝑛𝑡 85,000 85,000 W 

𝑝𝑘
𝑑𝑒𝑐  70,000 70,000 W 

*Average value under three speed levels 

Generation of the Problem Instances 

Three sets of problem instances are generated for comparison purposes: small-, medium, 

and large-size instances including 12, 12, and 16 problems, respectively. Note that the 

ratio between the number of disaster-affected nodes, |Ι|, to the number of battery 

recharging stations, |F|, is maintained to be either 2.5 or 5. We locate the depot at the 

center of the disaster-affected region and randomly distribute the battery recharging 

stations within the region. Further, the number of drones, |𝐾|, and speed levels, |𝑆|, are 

kept fixed in all the generated instances i.e., |𝐾| = 2 and |𝑆| = 3. Following the same 
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procedure proposed by Solomon [41], disaster-affected nodes are distributed throughout a 

county based on three distribution functions: a random uniform distribution (𝑅), a 

clustered distribution (𝐶), 

 

Figure 4.3  Illustration for geographical locations of disaster-affected nodes, battery 

recharging stations, and drones depot on Hancock county 

and a semi-clustered distribution (𝑅𝐶). It is worth noting that RC is a mixture distribution 

of 𝑅 and 𝐶. 

Computational Experiments 

This sub-section evaluates the computational performances of the proposed 

algorithms, ALNS and MBATA, in solving model [DR] over GUROBI. Table 4.3 to 4.5 

presents the computational performances of GUROBI, ALNS, and MBATA algorithm in 

solving model [DR] under three different problem instances: small (Case C1- C12), 

medium (Case C13-C24), and large (Case C25-C40) instances. The ∆f1(%), ∆f2(%), and 
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∆f3(%), reported in Table 4.3 to 4.5, represent the gap between the upper bounds 

obtained from GUROBI, ALNS, and MBATA to the lower bound obtained from 

GUROBI, respectively, i.e., ∆𝑓𝑖(%) = (
𝑈𝐵−𝐿𝐵𝐺𝑈𝑅𝑂𝐵𝐼

𝐿𝐵𝐺𝑈𝑅𝑂𝐵𝐼
) ∗ 100%, where 𝑖 =

{{GUROBI, ALNS, MBATA} and 𝑈𝐵 and LB stand for upper bound and lower bound, 

respectively. Further, we set 0.0% optimality gap for GUROBI and 7,200 computational 

time restriction (in seconds) for both GUROBI and proposed algorithms (ALNS and 

MBATA). Finally, the boldface letters under T(s) column in Tables 4.3 through 4.5 

indicate the best computational time (in seconds) between proposed algorithms and 

GUROBI.  

Results indicate that GUROBI, ALNS, and MBATA are capable of solving all the 

small and medium-size problem instances under each distribution function i.e., random, 

clustered, and semi-clustered, within the pre-specified time limit. It is observed that 

ALNS and MBATA algorithms are 9.41 and 43.31 times faster than GUROBI in relation 

to smallsize problems and 8.68 and 63.95 times faster than GUROBI in relation to 

medium-size problems, respectively. Note that these savings in computational times are 

achieved without sacrificing any solution qualities. Additionally, MBATA algorithm is 

4.59 and 7.36 times faster than the ALNS algorithm in relation to small- and medium-size 

problems, respectively. In overall, we observe that the MBATA algorithm presents 

superior computational performances in solving small- and medium-size problems of 

model [DR] over GUROBI and ALNS. 
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Table 4.3 GOROBI, ALNS, and MBATA performances under small-size problem 

instances 

Disaster- 

affected node 

distribution 

 GUROBI ALNS MBATA 

 

 

 

 

 

 

 Random     

Case ∆𝑓1(%) 𝑇(𝑠) ∆𝑓2(%) 𝑇(𝑠) ∆𝑓3(%) 𝑇(𝑠) 

C1 0.0 9.25 0.0 1.82 0.0 0.66 

C2 0.0 9.39 0.0 1.84 0.0 0.71 

C3 0.0 76.29 0.0 6.22 0.0 1.01 

C4 0.0 76.22 0.0 6.41 0.0 1.06 

C5 0.0 152.36 0.0 14.29 0.0 3.28 

C6 0.0 158.32 0.0 15.14 0.0 3.29 

C7 0.0 198.54 0.0 24.11 0.0 4.34 

C8 0.0 202.36 0.0 24.88 0.0 4.41 

C9 0.0 399.59 0.0 39.58 0.0 9.69 

C10 0.0 416.58 0.0 45.94 0.0 10.55 

C11 0.0 543.56 0.0 61.29 0.0 13.84 

C12 0.0 549.33 0.0 63.22 0.0 14.98 

Average  0.0 232.64 0.0 25.39 0.0 5.65 

 

 

 

 

 

Clustered 

C1 0.0 8.15 0.0 1.64 0.0 0.59 

C2 0.0 8.42 0.0 1.58 0.0 0.64 

C3 0.0 68.54 0.0 5.41 0.0 0.98 

C4 0.0 71.24 0.0 5.89 0.0 1.02 

C5 0.0 146.59 0.0 13.04 0.0 2.95 

C6 0.0 151.25 0.0 13.14 0.0 3.12 

C7 0.0 188.24 0.0 21.39 0.0 3.98 

C8 0.0 191.28 0.0 22.67 0.0 4.09 

C9 0.0 387.48 0.0 37.44 0.0 7.84 

C10 0.0 392.22 0.0 38.45 0.0 10.24 

C11 0.0 540.28 0.0 59.87 0.0 12.47 

C12 0.0 542.18 0.0 60.24 0.0 13.69 

Average  0.0 224.65 0.0 23.39 0.0 5.13 

 

 

 

 

 

Semi-clustered 

C1 0.0 8.14 0.0 1.79 0.0 0.59 

C2 0.0 8.36 0.0 1.81 0.0 0.69 

C3 0.0 71.29 0.0 5.98 0.0 1.06 

C4 0.0 73.44 0.0 6.77 0.0 1.27 

C5 0.0 148.69 0.0 14.04 0.0 3.11 

C6 0.0 150.36 0.0 14.18 0.0 3.18 

C7 0.0 191.27 0.0 21.58 0.0 4.09 

C8 0.0 193.48 0.0 22.42 0.0 4.38 

C9 0.0 398.57 0.0 36.48 0.0 7.57 

C10 0.0 399.84 0.0 37.24 0.0 8.51 

C11 0.0 540.43 0.0 62.49 0.0 13.09 

C12 0.0 561.28 0.0 64.10 0.0 13.33 

Average  0.0 228.75 0.0 24.07 0.0 5.07 

Total Average  0.0 228.68  24.28  5.28 
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Table 4.4 GOROBI, ALNS, and MBATA performances under medium-size problem 

instances 

Disaster- 

affected 

node 

distribution 

 GUROBI ALNS MBATA 

 

 

 

 

 

 

Random 

Case ∆𝑓1(%) 𝑇(𝑠) ∆𝑓2(%) 𝑇(𝑠) ∆𝑓3(%) 𝑇(𝑠) 

C13 0.0 984.51 0.0 107.49 0.0 17.18 

C14 0.0 993.54 0.0 109.86 0.0 17.22 

C15 0.0 1,136.84 0.0 147.58 0.0 24.36 

C16 0.0 1,144.88 0.0 151.29 0.0 24.87 

C17 0.0 1,458.33 0.0 184.36 0.0 27.59 

C18 0.0 1,468.29 0.0 188.66 0.0 27.84 

C19 0.0 2,145.98 0.0 259.85 0.0 30.87 

C20 0.0 2,289.68 0.0 278.52 0.0 31.22 

C21 0.0 2,872.48 0.0 331.58 0.0 44.28 

C22 0.0 2,998.24 0.0 357.18 0.0 45.94 

C23 0.0 3,842.24 0.0 393.54 0.0 48.94 

C24 0.0 4,339.25 0.0 428.35 0.0 52.67 

Average  0.0 2,139.52 0.0 244.85 0.0 32.74 

 

 

 

 

 

Clustered 

C13 0.0 989.54 0.0 112.11 0.0 18.54 

C14 0.0 1,011.26 0.0 121.22 0.0 18.98 

C15 0.0 1,128.58 0.0 146.55 0.0 22.21 

C16 0.0 1,139.54 0.0 149.74 0.0 23.59 

C17 0.0 1,439.58 0.0 184.38 0.0 26.88 

C18 0.0 1,482.66 0.0 195.69 0.0 28.54 

C19 0.0 2,144.58 0.0 257.84 0.0 30.84 

C20 0.0 2,188.35 0.0 289.54 0.0 33.28 

C21 0.0 2,841.19 0.0 330.24 0.0 44.21 

C22 0.0 2,945.74 0.0 344.59 0.0 44.59 

C23 0.0 3,814.22 0.0 389.57 0.0 47.86 

C24 0.0 4,335.29 0.0 426.58 0.0 52.14 

Average  0.0 2,121.71 0.0 245.67 0.0 32.63 

 

 

 

 

 

Semi-

clusered 

C13 0.0 993.58 0.0 108.66 0.0 18.21 

C14 0.0 1,024.29 0.0 119.67 0.0 18.56 

C15 0.0 1,143.29 0.0 149.58 0.0 23.57 

C16 0.0 1,147.85 0.0 150.14 0.0 24.58 

C17 0.0 1,448.29 0.0 189.55 0.0 29.67 

C18 0.0 1,459.84 0.0 195.51 0.0 33.24 

C19 0.0 2,152.62 0.0 264.21 0.0 38.24 

C20 0.0 2,199.27 0.0 269.58 0.0 39.58 

C21 0.0 3,024.23 0.0 345.28 0.0 45.88 

C22 0.0 3,059.84 0.0 368.54 0.0 47.84 

C23 0.0 4,124.22 0.0 410.24 0.0 50.28 

C24 0.0 4,329.87 0.0 438.52 0.0 53.66 

Average  0.0 2,175.59 0.0 250.79 0.0 35.27 

Total 

Average 

 0.0 2,145.61  247.10  33.55 

 



www.manaraa.com

 

45 

Table 4.5 GOROBI, ALNS, and MBATA performances under large-size problem 

instances 

Disaster- affected 

node distribution 

 GUROBI ALNS MBATA 

       

 

 

 

 

 

 

 

Random 

Case ∆𝑓1(%) 𝑇(𝑠) ∆𝑓2(%) 𝑇(𝑠) ∆𝑓3(%) 𝑇(𝑠) 

C25 0.0 6,422.21 0.0 584.27 0.00 67.55 

C26 4.27 LCT 1.90 596.48 1.90 72.43 

C27 2.89 LCT 0.67 680.09 0.67 83.59 

C28 4.67 LCT 1.70 734.56 1.70 88.48 

C29 7.56 LCT 1.88 811.88 1.88 99.64 

C30 7.24 LCT 1.73 941.06 1.73 103.21 

C31 8.67 LCT 1.43 979.28 1.43 118.54 

C32 9.91 LCT 1.38 1,013.07 1.38 121.62 

C33 18.34 LCT 1.59 1,159.61 1.59 189.59 

C34 20.27 LCT 1.91 1,188.57 1.91 194.56 

C35 21.32 LCT 0.61 1,243.28 0.61 201.66 

C36 22.46 LCT 0.99 1,387.44 0.99 210.47 

C37 30.24 LCT 0.65 1,421.08 0.65 229.24 

C38 31.93 LCT 0.94 1,447.13 0.94 237.74 

C39 33.31 LCT 1.48 1,564.08 1.48 255.21 

C40 33.38 LCT 1.35 1,588.03 1.35 269.28 

Average  16.03 7,151.38 1.26 1083.74 1.26 158.92 

    

 

 

 

 

 

 

Clustered 

C25 0.0 6,387.19 0.00 579.19 0.00 66.04 

C26 0.0 6,245.28 0.00 584.22 0.00 67.26 

C27 4.01 LCT 0.79 677.41 0.79 82.19 

C28 5.89 LCT 1.82 689.18 1.82 84.57 

C29 5.79 LCT 1.70 812.08 1.70 84.96 

C30 6.22 LCT 0.79 819.56 0.79 88.35 

C31 7.53 LCT 2.03 975.24 2.03 116.87 

C32 8.63 LCT 1.10 986.24 1.10 119.28 

C33 21.06 LCT 1.75 1,138.28 1.75 187.28 

C34 21.73 LCT 1.88 1,180.27 1.88 191.36 

C35 22.48 LCT 0.59 1,237.28 0.59 200.57 

C36 23.26 LCT 0.82 1,234.08 0.82 211.38 

C37 30.41 LCT 0.98 1,424.01 0.98 225.11 

C38 32.60 LCT 0.83 1,439.25 0.83 231.57 

C39 32.51 LCT 0.96 1,501.16 0.96 250.11 

C40 32.60 LCT 0.88 1,576.04 0.88 266.34 

Average  15.92 7,089.52 1.06 1,053.34 1.06 154.57 

    

 

 

 

 

 

 

 

Semi-clustered 

C25 2.71 LCT 1.08 595.28 1.08 68.35 

C26 4.62 LCT 2.22 599.33 2.22 69.87 

C27 5.95 LCT 1.87 658.31 1.87 81.33 

C28 5.69 LCT 0.52 674.24 0.52 85.33 

C29 6.39 LCT 1.95 819.26 1.95 88.28 

C30 6.74 LCT 1.68 826.34 1.68 89.38 

C31 6.59 LCT 1.17 992.21 1.17 119.35 

C32 7.47 LCT 1.86 1,012.08 1.86 128.45 

C33 18.90 LCT 1.30 1,089.24 1.30 148.36 

C34 19.27 LCT 0.57 1,114.27 0.57 153.24 

C35 23.98 LCT 0.77 1,268.54 0.77 188.65 

C36 25.09 LCT 1.11 1,293.53 1.11 198.27 

C37 33.35 LCT 1.33 1,435.24 1.33 224.87 

C38 34.85 LCT 1.19 1,487.21 1.19 234.82 

C39 25.75 LCT 0.87 1,524.26 0.87 269.35 

C40 25.52 LCT 0.56 1,548.25 0.56 279.04 

Average  15.80 LCT 1.25 1,058.59 1.25 151.68 

Total Average  15.91 LCT 1.19 1,065.22 1.19 155.06 

LCT represents limited computational time set as 7,200 sec. 
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For large-size problems, we observe that GUROBI fails to solve most of the 

problem instances (solves only 3 out of 48 instances) by obeying the pre-specified 

termination criterion. On the other hand, experimental results indicate that both the 

ALNS and MBATA algorithms are capable of solving all the problem instances with an 

average of 1.19% optimality gap within the pre-specified time limit. On average, the 

ALNS and MBATA algorithms are found to be 6.70 and 46.09 times faster than 

GUROBI in solving the largeinstances of model [DR]. Moreover, it is observed that the 

MBATA algorithm is 6.86 times faster than the ALNS algorithm under the similar 

experimental conditions. In overall, MBATA algorithm consistently produces high 

quality solutions in a reasonable amount of time for the all the test instances considered 

in this study. 

Sensitivity Analysis 

The first set of experiments study the impact of drones depot location on utilized 

drones and consequently to the overall network cost. More specifically, we place the 

drone depot on different locations of the county such as county center, densely populated 

regions, northern, southern, eastern, and western part of the county and examine their 

impact on utilized drones and overall network/service cost. Figure 4.4 demonstrates the 

nine geographical locations considered for the case experiments: (1) county center, (2)-

(5) four densely populated areas in the Hancock county, and (6)-(9) northern, southern, 

eastern, and western part of the county. To run the experiments, we ensure that the 

distribution of battery recharging stations (𝐹𝛷) remain fixed in all the experiments. 
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Results in Figure 4.5 clearly supports that the number of utilized drones and 

consequently the overall network cost are significantly impacted by the drone depot  

 

Figure 4.4 Illustration for potential locations of drones depot on the network 

 

 

 

Figure 4.5 Impact of drones depot location on (a) utilized drones and (b) network cost 
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location. For our case study, we observe that if the depot is placed in the center of the 

county, then the design shall minimize the total number of utilized drones and results in a 

minimum network/service cost. However, if the drone depot center is placed at any 

densely populated region (2)-(5) or cardinal region (6)-(9), then both the number of 

drones required to serve a disaster-affected region and the overall network/service cost 

increases simultaneously. This is primarily due to the reason that the depot location 

significantly impacts drone’s maximum allowable travel time 𝑡 𝑘
𝑚𝑎𝑥. It is worth noting 

that even though the number of utilized drones remained same when the depot location is 

placed in the third and fourth densely populated region as well as the northern and 

southern part of the county i.e., location (4)-(7), the overall network costs are found to be 

different for them. This may incur due to different combinations of utilized drone types 

and/or different developed routes for utilized drones. 

 

Figure 4.6 Impact of number of disaster-affected nodes on (a) utilized drones and (b) 

network cost 

The second set of experiments study the impact of number of disaster-affected 

nodes, |𝐼|, on the number of utilized drones to serve a disaster-affected region and overall 
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network cost. To run these experiments, we vary |𝐼| from 45 to 80 and randomly place 

them in the tested region. However, in all the experiments, the number of battery 

recharging stations ℱΦ are remained fixed. Results in Figure 4.6 clearly indicate that 

there is a direct relationship between the number of disaster-affected nodes |𝐼| with the 

total number of utilized drones and the overall network cost. For instance, if the node size 

|𝐼| increases from 45 to 80, then the overall drone requirement to serve a disaster-affected 

region and network cost are increased by approximately 222.2% and 62.5%, respectively. 

This clearly indicates that |𝐼| has a significant impact on the overall system performance. 

 

Figure 4.7 Impact of battery recharging stations distribution on drone utilization 

The third set of experiments study the impact of battery recharging stations 

distribution ℱΦ on drone utilization. To perform these experiments, we vary the base 

|ℱΦ| = 13 by ±80% and examine them on three different node sets |𝐼| = {35,65,100}. 

Figure 4.7 presents the impact of variability on |ℱΦ| to the total number of utilized 

drones (Mavic Pro and Vanguard) in serving our tested region. Results indicate that the 
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number of utilized drones decreases with an increase in |ℱΦ| for up to a certain level. 

Beyond that level, the requirement for drone to serve the same geographical area 

increases. This level can be considered as the minimum economic level beyond and after 

which the number of drones required to serve a disaster-affected region increases. 

Experimental results indicate that setting |ℱΦ| between 20-40, 20-30, and 20-40 provides 

the minimum economic level for |𝐼| = 35, 65, and 100, respectively. 

Table 4.6 Utilized drones and network cost based on the drone’s 𝑡 𝑘
𝑚𝑎𝑥 

Mavic Pro 

𝑡 𝑘
𝑚𝑎𝑥  (mins) 

Vanguard 

𝑡 𝑘
𝑚𝑎𝑥  (mins) 

Utilized 

Mavic Pro 

Utilized 

Vanguard 

Total utilized 

drones 

Network cost ($) 

50 120 13 5 18 8,472 

50 110 13 5 18 8,472 

50 100 14 5 19 8,568 

50 90 15 5 20 8,594 

50 80 16 6 22 9,656 

50 70 18 6 24 9,945 

50 120 13 5 18 8,472 

60 120 13 5 18 8,472 

70 120 13 5 18 8,472 

80 120 13 5 18 8,472 

90 120 13 5 18 8,472 

100 120 13 5 18 8,472 

50 120 13 5 18 8,472 

60 110 13 5 18 8,472 

70 100 12 5 17 8,249 

80 90 11 4 15 7,749 

90 80 10 4 14 7,552 

100 70 9 4 13 7,329 

 

The next set of experiments study the impact of drone’s maximum allowable 

travel time, 𝑡𝑘
𝑚𝑎𝑥, on the number of utilized drones to serve a disaster-affected region and 

overall network cost. Selection of 𝑡𝑘
𝑚𝑎𝑥 typically depends on the discretion of the central 

disaster management planner. The value can be set to a low number when obtaining the 

information to a disaster-affected region is of utmost importance. However, depending 
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upon the severity of the situation and urgency of collecting information, 𝑡𝑘
𝑚𝑎𝑥 can be 

varied but up to the drone’s manufacturing range. To test the impact of 𝑡𝑘
𝑚𝑎𝑥 on system 

performance, we create three different scenarios where in the first scenario we vary the 

𝑡𝑘
𝑚𝑎𝑥 for the Vanguard drones but kept it fixed for the Mavic Pro drones. The second 

scenario is created by varying the 𝑡𝑘
𝑚𝑎𝑥 for Mavic Pro drones while keeping the values 

fixed for the Vanguard drones. In the last scenario, we vary the 𝑡𝑘
𝑚𝑎𝑥  for both Mavic Pro 

and Vanguard drones. 

 

Figure 4.8 Impact of the 𝑡 𝑘
𝑚𝑎𝑥 on utilized drones 

 

Table 4.6 and Figure 4.8 show the impact of 𝑡𝑘
𝑚𝑎𝑥 on total utilized drones and 

network cost. Results clearly indicate that the number of utilized drones and consequently 

the overall network cost are not sensitive to the changes of 𝑡𝑘
𝑚𝑎𝑥  for the Mavic Pro 
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drones. For  instance, if the 𝑡𝑘
𝑚𝑎𝑥 changes from 50 minutes to 100 minutes, the total 

utilized drones to serve a disaster-affected region and the overall network cost still 

remain unchanged. However, we observe that the number of utilized drones and the 

overall network cost are sensitive to the changes of 𝑡𝑘
𝑚𝑎𝑥 from the Vanguard drones, but 

fixed for the Mavic Pro drones, or the case when 𝑡𝑘
𝑚𝑎𝑥 for both the Mavic Pro and 

Vanguard drones vary. For instance, the number of utilized drones and network cost 

increase by 33% and 17%, respectively, when Vanguard drones 𝑡𝑘
𝑚𝑎𝑥 are reduced by 

42%. Similarly, we observe a 28% and 13% decrease in utilized drones, when 𝑡𝑘
𝑚𝑎𝑥  for 

the Mavic Pro and Vanguard drones are increased and decreased by 100% and 42%, 

respectively. In summary, more drones are needed to serve a disaster-affected region if 

𝑡𝑘
𝑚𝑎𝑥  for the drones becomes low. Further, utilizing Mavic Pro drones with high 𝑡𝑘

𝑚𝑎𝑥 

and Vanguard drones with low 𝑡𝑘
𝑚𝑎𝑥 can potentially reduce the overall network/service 

cost. 

The last set of experiments study the impact of drone recharging time  𝜓𝑗𝑘 on 

drone utilization. The experimental results will reveal that how the improvement of 

ongoing drone battery technology may help to reduce the number of utilized drones to 

serve a disaster-affected region. To perform these experiments, we vary the base 𝜓𝑗𝑘 by 

±80% and examine them on three different node sets |𝐼| = {35, 65, 100}.  Figure 4.9 

presents the impact of 𝜓𝑗𝑘 on utilized drones (Mavic Pro and Vanguard). It is observed 

from the figure that on average, a 60% increase in 𝜓𝑗𝑘  will require an additional 12.2% 

drones to serve a disaster-affected region from the base case value. Similarly, an average 

of 14.69% less number of drones will now require to serve the same disaster-affected 
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area when the 𝜓𝑗𝑘 value decreases by 60% from the base value. Note that in Figure 4.9, 

we did not report any solution of 𝜓𝑗𝑘 ≥ 60% for |𝐼| = 100. This is primarily due to the 

violation of maximum allowable travel time constraints (8) and are caused by the 

increment in recharging time. 

 

Figure 4.9 Impact of 𝜓𝑗𝑘 on drone utilization 



www.manaraa.com

 

54 

CHAPTER V 

CONCLUSIONS 

This study investigates a Heterogeneous Fixed Fleet Drone Routing problem 

(HFFDRP) to design a safe, reliable, and cost-efficient disaster-affected region inspection 

plan using battery-driven drones. A mixed-integer linear programming model (MILP) is 

proposed to minimize the post-disaster inspection cost by considering a number of drone 

trajectory-specific factors into consideration such as ascending and descending costs, 

battery recharging costs, servicing costs (i.e., costs associated with taking images at 

disasteraffected nodes), drone hovering, turning, acceleration, constant, and deceleration 

costs. The trajectories between each pair of nodes are constructed using a path 

construction model that obeys the restrictions set legislated by the Federal Aviation 

Agency (FAA), technological performance of drones, along with geographical and 

environmental restrictions set for drone flights. To the best of the authors’ knowledge, 

this is the first study that integrates drone trajectory-specific factors into routing decisions 

to serve/monitor a disaster-affected region. Additionally, due to the need to solve our 

proposed optimization framework in a realistic-size network problem, two solution 

algorithms, known as an Adaptive Large Neighborhood Search (ALNS) algorithm and 

Modified Backtracking Adaptive Threshold Accepting (MBATA) algorithm, are 

proposed. Computational results indicate that the proposed MBATA algorithm is capable 

of producing high-quality solutions consistently within a reasonable amount of time. 
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Finally, we use Hancock county from Mississippi State as a test bed to visualize and 

validate the modeling results. A number of managerial insights are drawn such as how 

the drone depot location, number of disaster affected nodes and battery recharging 

stations, maximum allowable travel time, and battery recharging time impact the design 

and management of a drone routing operation.  

To summarize, the contributions of this study include: (i) introducing a new class 

of drone routing problem involving management of heterogeneous types of drones with 

limited batter capacity and charging station availability, speed optimization, and 

trajectory specific cost components; (ii) proposing a path construction model by obeying 

the restrictions set forward by FAA, technological, geographical, and environment 

restrictions of drone transportation; (iii) developing and testing of efficient heuristics, 

namely, ALNS and MBATA algorithms, to solve realistic-size network design problems; 

and (vi) managerial insights drawn from a real-life disaster-affected monitoring case 

study. We believe the proposed methodologies and managerial insights obtained from 

this study will help humanitarian organizations better manage the post-disaster recovery 

operations. 

 This study can be extended in several research directions. First, it would be 

interesting to see how the stochasticity associated with battery degradation and service 

priority impact our model framework. Further, the authors would like to examine how 

smart grid systems can be integrated with the proposed optimization framework to serve 

a disaster-affected region. These issues can be addressed in future studies.
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